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Abstract — A version of the least squares method, when adjustable parameters in a trial solution are

functions of an independent variable, is presented. Minimization of the least squares residual is done in the

sense of the variational calculus. The procedure is applied on a few heat conduction problems. In one example
an error estimate of the approximate solution is obtained.

NOMENCLATURE
u, temperature;
U, approximation to temperature
distribution;
X, y, position coordinates;
t, time;
k, heat source coefficient ;
q, adjustable parameter.
Greek symbols
a, thermal diffusivity;

y,B,t, parameters defined in text.

1. INTRODUCTION

APPROXIMATE analytical solutions to partial differen-
tial equations are useful when exact analytical so-
lutions are either too difficult or impossible to obtain,
or when the work to find a numerical solution cannot
be justified. There are a lot of such methods, which
have appeared in the technical literature in the past 30
years (see for example [1], [2] and [4-10]), for solving
the heat conduction problems. One of them is the least
squares method.

The basic point of the least squares method is a
functional which is attached to the differential equa-
tion. The variational principle, based on this func-
tional, is a true minimum principle [9] whose mini-
mum (value of the functional) is zero. The cor-
responding Euler—Lagrange equation is of a higher
order than the differential equation of the process, in
our case the heat conduction equation. The equation is
a combination between the heat conduction equation
and its partial derivatives, but if the heat conduction
equation is satisfied then the corresponding first
variation is zero. If we substitute a trial solution of the
heat conduction equation into the functional, then the
functional measures the total squared residual by
which the functional fails to satisfy the equation.
Minimization of the square residual with respect to
adjustable parameters in a trial solution is precisely the

least squares method. When the parameters are unde-
termined constants the minimization can be straight-
forwardly escorted. According to Finlayson and
Scriven [5], the direct extension of the least squares
criterion is of doubtful significance when the para-
meters are a function of time, or some other inde-
pendent variable. This problem is surpassed by Vuja-
novic and Baclic [6]. They selected, in a physical way, a
group of parameters and minimized the functional
with respect to them. However, in both papers [5] and
[6], the functional is not minimized in the sense of
variational calculus. Hence, the adjustable parameters
are not calculated in the optimal way.

In this paper the least squares residual will be
minimized in the sense of the variational calculus.
Because the adjustable parameters are functions of an
independent variable, the method presented here, is in
some sense, the Kantorovich approach to the least
squares method. The procedure is demonstrated on
four heat conduction problems. According to the order
of the differential equation, for finding the adjustable
parameter, the procedure is unfamiliar with all other
approximate methods.

2. BASIC EQUATIONS
Let us consider the following partial differential
equation of the second order
G(u’ Uny Uy Usexy Uppy Ueyy X, t) =0,
for xe[xg,x,], t€[te,t;] (1)
(u, = ou/fae,...),
whose solution u is a function of the independent
variables x and ¢. So far we will assume that the
corresponding boundary and initial conditions can be
arbitrary. Mikhlin [9] has shown that the classical

variational formulation for this equation is equivalent
to minimizing the positive definite integral

131 X1
I= J‘ J‘ [G(u’ Uy Upy Uyexs Upgy Unepy X, t)]z dx dt’ (2)
to J Xo
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where t,, t;, X, and x, are given values of the

independent variables on the boundaries. Indeed, the
first variation of the functional (2) is
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Now, if equation (1) is satisfied (G = 0) then the first
variation ¢l is equal to zero.

Remark 1
This is valid for arbitrary boundary conditions
which must be satisfied by equation (1).

Remark 11

Here, the condition 61 = 0 does not imply that G
also must be zero, as is usual in other variational
formulations. That is, the solution of (1) is not the only
point at which the functional is stationary (2).

Remark 111

The Euler—Lagrange equation that follows from (3)
if 81 =0, is of the fourth order. The equation is a
combination of equation (2) and its partial derivatives
with respect to the independent variables.

Remark IV

The variational principle (2) is a true minimum
principle. The corresponding minimal value of (2} is
Zero.

In our application of the variational principle (2) for
obtaining an approximate solution of equation (1) we
will need the first variation of the following functional

I= (‘ L{q,4,4,t)dt, (g = dg/dt), 4)

v o

where g is the ‘generalized coordinate’ and L is the
corresponding Lagrangian function. The first vari-

ation of (4) is
w/gl. d oL d* éL

ol = 9__7_7+72 ,_>5th
og dt 6g di* 04

to
oL d 0L> oL ) o
- )og+|—06 (5
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If we substitute a trial solution of equation (1) into the
functional (2) then the functional measures the total
squared residual by which the function fails to satisfy
equation (1). We will assume that the trial solution is a
known function of the independent variable x with the
adjustable parameter (generalization to more para-
meters is straightforward) g as an unknown function of
another independent variable 1. Substituting the triai
solution into (2) and performing integration with
respect to the variable x, the functional (2) will take the
form (4). Now, the so obtained functional will be
minimized with respect to g{¢}, in the sense of the
variational calculus ; that is g(t) will be forced to satisfy
the equation 81 = 0, where 8/ is given by {5},

3. EXAMPLES

(A) As the first example we shall study the heat
conduction problem through semi-infinite slab in one
dimension (x-coordinate). The governing differential
equation is

(7Y

a2
u ctu )
- — ey = 16}
t cx”

G

1

where u is the temperature, ¢ is the time and « is the
thermal diffusivity. The slab is initially at zero tem-
perature and its face x =0 1s suddenly raised to
temperature u,. In accordance with the well-known
notion of penetration depth we now define a quantity
q(t) called the penetration distance. Its property is that
for x > ¢(t) the slab is at the initial temperature and
that there is no heat transfer beyond this distance.
Hence the boundary conditions of the problems are,

ulqli),1] = 0. 7

In order to obtain an approximate solution of the
problem we will assume a temperature profile in the

form
RY : )
U:%L-W_ 5
gl

Substituting (8) into (6) and (2) and performing
integration with respect to x, from x, = 0to x; = g(1).
the equation (2) yields

E az o ‘-l 1,12 *-
| = 4y2 ( — 2 )dz, (%
o J‘O g’ 3¢* 30g:

where we selected the time interval to be 1€[0, . ] If
we want to minimize the functional (9) then the
corresponding first variation must be zero. Hence from
(9), (4) and (5) and assuming that g(0) = 0 [84(0) = 0]
and that g(t) is not specified for t = = [dg() # 0] we
have the following differential equation

u(0,1) = ug,

2¢%G — q*¢* +900F =0 110}

and the next natural boundary condition
j o
q @ _g

(1)
59 4

for ¢, = v
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Remark 1

The differential equation (10) is of the second order.
All other approximate methods for the same problem
and same trial function (8), give the first order
differential equation for finding ¢(z).

Remark 11

Structure of the boundary condition (11)is the same
as the differential equation for g(t) that can be obtained
by the Galerkin method.

Solution of equations (10) and (11), for g(0) = 0, is

g = (120)'* /(). (12)

-The graphical comparison between the exact solution
u = up[1 — erf(z/2)] the present method solution U =
up[1 — z/(120)'*]%, Galerkin solution U% =
uo[1 — z/,/10]* and the integral method solution U’
= uo[1 — z/,/12]?, where z = x/,/(z), is plotted on
Fig. 1.

{B) Let us consider the temperature distributionin a
finite insulated rod of the length 2. The ends of the rod
are maintained at a constant temperature, say 0.
Assume that the initial temperature is given by
ug(l — x?), where u, is a constant. If the physical
properties of the rod are independent of the tempera-
ture then the process of cooling is described by the
differential equation (6) subject to the following initial
and boundary conditions

u=up(l —x?) att=0 forxe[—-1,1] (13)

u=0 atx=+1 fort>0. (14)
Let us suppose the trial solution as
U = upq(t)(1 — x*). (13)

- Integral method

051 Present method

0.4 Exact solution
Gaierkin method

0.3

o.z2-

O

i
2
2= X
Vat

Fi6. 1. Comparisons of various solutions for problem (A).
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For (0} = 1 the profile (15) will satisfy both the initial
and the boundary conditions. Substituting (15) into (6)
and (2) and performing integration with respect to x,

from xq = —1t0 x; = 1, we have
2 " 2 32 2 s 2.2
I'=uj} 8 Eq + gaxqq +a‘g® Jdt, (16)

where ¢, is a specified instant of time. Assuming that
the adjustable parameter q(¢) is arbitrary for t = t,, the
condition ¢I = 0 in (5) yields the following differential
equation

i— e =0, 7
i—59q (17

and the natural boundary condition
2§ +35ag=0, forr=t,. (18)

Remark 1
The boundary condition (18) is of the same form as
the differential equation for finding g which is obtained
by the Local Potential method (see [2] p. 259). The
solution of (17) and (18), for ¢(0) = 1, is
B \/15
Y= 7

(4y — 10)sinh yot
(19)

S+ 2+ (2y - 5)°

If we select a logical value for ¢, to be t; = co, then the
solution (19) becomes g = e ™. This solution is in
good agreement with the solution of the same problem
obtained by the local potential method, where y = 5/2.
The values of the functional (16), which are certain
measures of the error involved in approximate so-
lution, are I[y = \/(15/2)] = au}0.25452 and I(y =
5/2) = au} 0.26666.

(C) Let us consider the same problem as (B) but with
arbitrary initial temperature distribution u(x,0) =
S{x) and with the heat conductivity linearly de-
pendent on temperature. We take the length of the rod
to be equal to # so that boundary conditions become

u0,6) =0, uln,t)=0. (20)

The differential equation describing the process
becomes

g=e ™4
e

du ] du
G=——o— —

o [(1 + Bu) ax} 1)
where o and £ are given constants. Choosing the trial
function as

U =q(t) sinx, 22)

substituting this expression into (21) and (2) and
integrating with respect to x from x, = 0to x, = 7, we
have

I dq 2 4 dq
I= —f — —_Rg* 1L
f Mdr) +(’“”3’3" >dr

T

+
2

4
¢+ gﬂq:’ + gﬁzq‘]dn (23)
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where,

T = af, (24)

and 7, is given value of the new independent variable.
Again, the minimizing condition 3/ = 0, together with
0q(0) = 0 and d¢q(z,) # 0, yields the following differen-
tial equation

d? 4
g+ T pe? v 2, 25)
dr T
and the natural boundary condition,
d
fﬁﬁ—q—f-——ﬁq =0, fort=1,  (26)

dt

The solution of the equations (25) and (26) for 1, =«
and ¢(0) = g, is given as:

(a) for small values of the parameter f

-1 4 2 T T
4=4goe™" + f—qoe e "~ 1)
T
1 4 32
2.3 .1 = o -2t _ " Lt
+ B gpe [<4+3n2>e 9.2¢
120
Z+9 ]+0(ﬂ) 27)

(b) for arbitrary f§ which is larger than zero f > 0,

3n

= , 28
9= p{on? = 16) Zsinh(s 4 Cy) 4] Y
where,
8
2+ S—ﬁ qo
n
C, = arcsinh oS (29)

= go(9n* — 16)172
In

We note that the initial value g, can be found by
minimizing the initial square residual of the form
= J [u(x,0) — gosin x]*dx, (30)
4]
with respect to g,. This standard procedure for finding
qo was applied previously (see for example [8]).
Applying the condition 8J/éq, = 0, we have,

4o =2J‘nf(x)sinxdx, (31)
n

o]

where u(x,0) = f(x) is given initial condition.

(D) As a last example we consider the problem of
determining the stationary temperature field in a plate
with, on one coordinate linearly dependent, heat
sources. Namely, we take

(32)

where k = constant. Also we choose

u=20 for (x,y)eC, (33)
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where C is the boundary of the plate defined by x =
taand y = + b. The differential equation (32) with
the boundary conditions (33) also arises in the elast-
icity theory. In that context u represents the stress
function for the bending of rectangular beams (sec
{11]. Section 124).

Let us take the approximate solution to the problem
(32), (33) in the form

U= (x?—a?)qy). (34)

where ¢(y) is a function to be determined by minimiz-
ing (2). Substituting (34) into (2) and performing the
integration with respect to x from x = —a to x = 4.
the equation (2) becomes

b rs 4 8
I =2a “ Lsa“q"2 + —atkvy” — }azqq”

+ 4q° — dkyq + kz‘szd): {35)

The Euler—Lagrange equation for the functional (35) is

RPS 42"+2 ky =0, 36,
544 3 q — ky (36)
while the natural boundary conditions are
gy =b)=qly = —b) =
4 2 1 - N
iga q " +ky—-2¢q=0 fory=+b (37}
Remark 1

The boundary conditions (37), are of the same form
as the differential equation for finding ¢ by the
Galerkin method. The solution to the equation (36)
with the boundary conditions (37) is

m :

q=C, (,osh - vsm — \' + Czsmh VyCos o ¥+ 55

(38)

where n = 1.61842, m = 0.345407 and where C; and
C, are constants that can be easily determined for
specified a, b and k. If we takea =b = 1and k = 0.2,
then C, = —0.01482, C, = —0.03808 so that the
approximate solution to the problem (32), (33)
becomes

U = (x* — 1)[ —0.01482 cosh 1.61842y sin 0.345407y
—0.03808 sinh 1.61842y cos 0.345407y + 0.1y].  (39)

For the differential equation (32) an error estimate
may be constructed, based on the value of the func-

tional (2). To do this, we define the error du as
ou=U — u, {40)

where U is approximate and u exact solution to the
boundary value problem (32), (33). Expressing u in (2)
by (40) we get

'12
I—J f [ ou “)“] dxdy.  (41)
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The Fourier series corresponding to du can be written
as

Oy = z Z Cnm d)nm(x’ y)a (42)

nm

where C,,, are constants (Fourier coefficients) and @,
are solutions of the following spectral problem

Pl 2%
nm "oy 3@, = 0. 43
ox? * y? “3)
®,, =0 for(x,yeC. 44)

Substituting (42) into (41) and using (43) and
Parseval’s equation [ 12] we get the following estimate

houls, < {(7'"3"‘_}’2

In (45) we used (A%,)min to denote the smallest eige-
nvalue of the spectral problem (43), (44) and

b a
H du f{ Ly = J J' {ou)? dxdy.
~b —a

For the specific case when a=b=1 and k=0.2,
approximate solution (39) gives, when substituted in
(2) I=0006515. Also (A2 )i = 2n% so that (45)
becomes

(45)

(46)

[ ul 1, < 0.004089. @7

4. CONCLUSIONS

A method, based on the least square residual, for
finding approximate solutions of heat conduction
problems, has been presented in this paper. It re-
sembles Kantorovich’s method since differential equa-
tions are obtained for finding adjustable parameters.
In Kantorovic’s method these differential equations
are the necessary conditions for the minimum of the
variational integral, while in the method presented
here they are a necessary and sufficient condition for
the minimum of the square residual. Therefore the
value of the integral of the square residual (2) is
minimum on the approximate solution determined by
the present method, when compared with other appro-
ximate solutions of the same type. The differential
equation for determining the adjustable parameter by
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the present method is always of the higher order than
the corresponding equations in other methods. In the
analyzed problems the natural boundary conditions
have the same structure as the differential equations
for finding the adjustable functions by other methods
[in example (A) Galerkin, in example (B) local poten-
tial and in example (D) Galerkin method]. The non-
linear heat conduction problem of this method reduces
to the corresponding non-linear two point boundary
value problem.

In comparison with other methods the results
obtained here are in good agreement.
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LA METHODE DES MOINDRES CARRES: APPROCHE DE KANTOROVICH

Résumé—On présente une version de la méthode des moindres carrés dans laquelle les paramétres ajustables

sont fonctions d’une variable indépendante. La minimisation du résidu des moindres carrés est faite dans le

sens du caleul variationnel. La procédure est appliquée 4 quelques problémes de conduction thermique. Dans
un exemple, on obtient une estimation de l'erreur dans la solution approchée.
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DIE METHODE DER KLEINSTEN QUADRATE: VORGEHEN NACH KANTOROVICH

Zusammenfassung — Es wird eine Version der Methode der kleinsten Fehlerquadrate beschrieben, bei der

die anzupassenden Parameter einer Versuchslgsung Funktionen einer unabhingigen Variablen sind. Die

Minimierung der Fehlerquadratsumme wird im Simme der Variationsrechnung durchgefiihrt. Das

Verfahren wird auf einige Wirmeleitungsprobleme angewendet. Fiir ein Beispiel wird eine Fehlerabschit-
zung der Niherungslésung angegeben.

METOJd HAUMEHbBUINX KBAJAPATOB - 11OJX0OJA KAHTOPOBHUYA

AHHOTALMHS - ﬂpewloxcen BAPDHAHT METOjld HAUMEHLIUIUX KBAAPATOB B CJIyHd€, KOTAa (10, IMOHOYHbLIC

napaMeTpsl B Hp06HOM PEHIEHUH ABJIAOTCH q,)yH](llHﬂMH HE3ABUCUMOIO NIEPEMEHHOIO. MuHUMU3AIMSA

HEBA3KH OCYIHECTBJIACTCHA CPEACTBAMN BAPHAUHOHHOIO HCYHCIIEHUSA. Meron ITPOBEPEH HA HECKONbKHX

33/1a4ax TEIUIONPOBOAHOCTH. B onanom u3 HPUMEPOB NOJIY4Y€HA OHCHKA NOTPeiltHOCTH HPM6JH>KCH-
HOTO pElIeHUs.



