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Abstract - A version of the least squares method, when adjustable parameters in a trial solution are 
functions of an independent variable, is presented. Minimization of the least squares residual is done in the 
sense of the variational calculus. The procedure is applied on a few heat conduction problems. In one example 

an error estimate of the approximate solution is obtained. 

NOMENCLATURE 

a, temperature; 

fJ, approximation to 
distribution; 

x, Y, position coordinates; 

r, time; 

k, heat source coefficient ; 

49 adjustable parameter.’ 

Greek symbols 

temperature 

a, thermal diffusivity ; 

Y, 8, rt parameters defined in text. 

1. INTRODUCTION 

APPROXIMATE analytical solutions to partial differen- 
tial equations are useful when exact analytical so- 
lutions are either too difficult or impossible to obtain, 
or when the work to find a numerical solution cannot 
be justified. There are a lot of such methods, which 
have appeared in the technical literature in the past 30 
years (see for example [l], [2] and [4-lo]), for solving 
the heat conduction problems. One of them is the least 
squares method. 

The basic point of the least squares method is a 
functionai which is attached to the diqerential equa- 
tion. The variational principle, based’on this func- 
tional, is a true minimum principle [9] whose mini- 
mum (value of the functional) is zero. The cor- 
responding Euler-Lagrange equation is of a higher 
order than the differential equation of the process, in 
our case the heat conduction equation. The equation is 
a combination between the heat conduction equation 
and its partial derivatives, but if the heat conduction 
equation is satisfied then the corresponding first 
variation is zero. If we substitute a trial solution of the 
heat conduction equation into the functional, then the 
functional measures the total squared residual by 
which the functional fails to satisfy the equation. 
Minimization of the square residual with respect to 
adjustable parameters in a trial solution is precisely the 

least squares method. When the parameters are unde- 
termined constants the minimization can be straight- 
forwardly escorted. According to Finlayson and 
Striven [5], the direct extension of the least squares 
criterion is of doubtful significance when the para- 
meters are a function of time, or some other inde- 
pendent variable. This problem is surpassed by Vuja- 
novic and Baclic [6]. They selected, in a physical way, a 
group of parameters and minimized the functional 
with respect to them. However, in both papers [S] and 
[6], the functional is not minimized in the sense of 
variational calculus. Hence, the adjustable parameters 
are not calculated in the optimal way. 

In this paper the least squares residual will be 
minimized in the sense of the variational calculus. 
Because the adjustable parameters are functions of an 
independent variable, the method presented here, is in 
some sense, the Kantorovich approach to the least 
squares method. The procedure is demonstrated on 
four heat conduction problems. According to the order 
of the differential equation, for finding the adjustable 
parameter, the procedure is unfamiliar with all other 
approximate methods. 

2. BASIC EQUATIONS 

Let us consider the following partial differential 
equation of the second order 

G(u,u u u u u X? I? XXI ff, .X*9 x,t)=O, 

for XE[X~,X~I, tE[b,hl (1) 
(u, f au/at,. . ), 

whose solution u is a function of the independent 
variables x and t. So far we will assume that the 
corresponding boundary and initial conditions can be 
arbitrary. Mikhlin [9] has shown that the classical 
variational formulation for this equation is equivalent 
to minimizing the positive definite integral 

r’ I= 
ss 

” [G(u u u u 9 x1 17 u u xx3 117 xt7 x,t)]‘dxdt,(2) 
to X0 
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where to, tl, x0 and x1 are given values of the 
independent variables on the boundaries. Indeed, the 

first variation of the functional (2) is 

Now, if equation (1) is satisfied (G = 0) then the first 

variation 61 is equal to zero. 

Remark I 

This is valid for arbitrary boundary conditions 
which must be satisfied by equation (1). 

Remark II 

Here, the condition 61 = 0 does not imply that G 
also must be zero, as is usual in other variational 

formulations. That is, the solution of (1) is not the only 

point at which the functional is stationary (2). 

Remark III 

The Euler-Lagrange equation that follows from (3) 
if 61 = 0, is of the fourth order. The equation is a 

combination of equation (2) and its partial derivatives 
with respect to the independent variables. 

Remark IV 

The variational principle (2) is a true minimum 
principle. The corresponding minimal value of (2) is 

zero. 
In our application of the variational principle (2) for 

obtaining an approximate solution of equation (1) we 
will need the first variation of the following functional 

i 

ti 
I= Uq, Li, 4, t)dt, (4 = dqldt), (4) 

y r,, 

where q is the ‘generalized coordinate’ and L is the 

corresponding Lagrangian function. The first vari- 
ation of (4) is 

61= 

If we substitute a trial solution of equation ( 1) into the 

functional (2) then the functional measures ihe tonal 
squared residual by which the function fails to satisfv 
equation (1). We will assume that the trial solution i\ <i 

known function of the independent variable u u ith the 
adjustable parameter (generalization to mar<: par+ 
meters is straightforward) y as an unknown function I$ 
another independent variable i Substituting rhc tri;ti 

solution into (2) and performing mtegration with 
respect to the variable x. the funztlonal (2) will !akc ~bc 

form (4). Now, the so obtained functional wil! by 

minimized with respect to y(t~, tn the sense of the 
variational calculus; that is q(f) will be forced to sat&\ 
the equation 61 = 0, where ril is given b! 151 

3. E:XAMPLLX 

(A) As the first example we shall study the heat 

conduction problem through semi-infinite slab in one 
dimension (x-coordinate). The governing differential 
equation is 

(6 j 

where u is the temperature, I is the time and s( is the 
thermal diffusivity. The slab is initially at zero tem- 

perature and its face Y = 0 is suddenly raised to 

temperature uO. In accordance with the well-known 
notion of penetration depth we now define a quantity 

q(t) called the penetration distance. Its property is that 
for x > q(t) the slab is at the initial temperature and 
that there is no heat transfer beyond this distance. 

Hence the boundary conditions of the problems are. 

u(O,t) = up u[q(r),f] = 0. (7) 

In order to obtain an approximate solution of the 
problem we will assume a temperature profile in the 

form 

Substituting (8) into (6) and 17) and performing 

integration with respect to x, from x0 = 0 to x1 = q(r). 
the equation (2) yields 

where we selected the time interval to be t E [O, I 1. If 
we want to minimize the functional (9) then the 
corresponding first variation must be zero. Hence from 
(9), (4) and (5) and assuming that q(0) = 0 [6q(O) = 01 
and that q(t) is not specified for f = 7 [bq( ‘Y ) # 0] we 

have the following differential equation 

2q-lij - q2$ + 90X2 = 0 

and the next natural boundary condition 

(10) 
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Remark I 
The differential equation (10) is of the second order. 

All other approximate methods for the same problem 
and same trial function (8), give the first order 
differential equation for finding q(t). 

Remark II 
Structure of the boundary condition (11) is the same 

as the differential equation for q(t) that can be obtained 
by the Galerkin method. 

Solution of equations (10) and (1 l), for q(0) = 0, is 

q = (120)li4~(at). (12) 

.The graphical comparison between the exact solution 
u = u,[l - erf(z/2)] the present method solution U = 
uo[l - 2/(120)“4]z, Galerkin solution UC = 
uo[l - z/J~O]~ and the integral method solution U’ 
= u,[l - z/&Z]“, where z = x/J@), is plotted on 
Fig. 1. 

(B) Let us consider the temperature distribution in a 
finite insulated rod of the length 2. The ends of the rod 
are maintained at a constant temperature, say 0. 
Assume that the initial temperature is given by 
~(1 - x2), where u0 is a constant. If the physical 
properties of the rod are inde~ndent of the tempera- 
ture then the process of cooling is described by the 
differential equation (6) subject to the following initial 
and boundary conditions 

u = u,(l - x2) at t = 0 for XE[-l,l] (13) 

u =0 at x = ii fort 20. (14) 

Let us suppose the trial solution as 

u = uoq(t)(l - X2). (15) 

G-g-a&[(l+Bu)g], (21) 

where a and fi are given constants. Choosing the trial 
function as 

U = q(t) sin x, (22) 

substituting this expression into (21) and (2) and 
integrating with respect to x from x0 = 0 to xi = rt, we 
have 

For q(0) = 1 the profile (IS) will satisfy both the initial 
and the boundary conditions. Substituting (15) into (6) 
and (2) and performing integration with respect to x, 
from x0 = - 1 to x1 = 1, we have 

I = 24; dt, (16) 

where t, is a specified instant of time. Assuming that 
the adjustable parameter q(t) is arbitrary for t = t,, the 
condition 61 = 0 in (5) yields the following differential 
equation 

4 - ya2q = 0, 

and the natural boundary condition 

24 + 5aq = 0, for t = t,. 

Remark I 

(1-f) 

(18) 

The boundary condition (18) is of the same form as 
the differential equation for finding q which is obtained 
by the Local Potential method (see [2] p. 259). The 
solution of (17) and (18), for q(0) = 1, is 

(4~ - 10)sinh yat 
q=e-yar+e2’““(5+2y)+(2y_5)’ y= 

J 

1.5 
2’ 

(19) 

If we select a logical value for t, to be t, = cc, then the 
solution (19) becomes q = e-ybt. This solution is in 
good agreement with the solution of the same problem 
obtained by the local potential method, where y = 5/2. 
The values of the functional (16), which are certain 
measures of the error involved in approximate so- 
lution, are Z[y = ,/(15/2)] = cluiO.25452 and r(y = 
5’2) = au; 0.26666. 

(C) Let us consider the same problem as (B) but with 
arbitrary initial temperature distribution u(x, 0) = 
f(x) and with the heat conductivity linearly de- 
pendent on temperature. We take the length of the rod 
to be equal to n so that boundary conditions become 

u(0, t) = 0, u(n, t) = 0. (20) 

The differential equation describing the process 
becomes 

FIG. 1. Comparisons of various solutions for problem (A). 
+ ;q2 + $?q3 + ;j2q4 1 dz, (23) 
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where, where C is the boundary of the plate detined by z =- 

c = Cct, (24) 
fa and y = t_ b. The differential equation (32) with 
the boundary conditions (33) also arises in the elast- 

and ri is given value of the new independent variable. icity theory. In that context u represents the stress 
Again, the minimizing condition dl = 0, together with function for the bending of rectangular beams (see 
&q(O) = 0 and 6q(t,) # 0, yields the following differen- [11]. Section 124). 
tial equation Let us take the approximate solution to the problem 

d2q 
dd$F = q + $2 + 2fi2q3, 

(32) (33) in the form 

(25) 
c = (x2 - U2)q(r). (341 

and the natural boundary condition, where q(j) is a function to be determined by minimtx- 

dq 4 
ing (2). Substituting (34) into (2) and performing the 

~~ +q+3nPYz=0, for7=7,. 
dz 

(26) integration with respect to x from z = -a to .Y = u. 
the equation (2) becomes 

The solution of the equations (25) and (26) for 7i = x h 

f I 

8 
and q(0) = q0 is given as: I = 2a 4 

4 X 

. -b Is” q 
I’2 + 3a2k_ry” _. 3 u2qq” 

(a) for small values of the parameter b 
+ 49’ - 4kr’q + k’v’ 

I 
d_r. (35) 

4 
q = qOe-’ + B,qie-‘(e-’ - 1) The Euler-Lagrange equation for the functional (35) is 

+ fi’qi e-’ 

4 

15a4qi’ - 

4 
3n2q” + 24 - ky = 0. (36) 

while the natural boundarv conditions are 

- ; + g 1 + 0(/33); (z7) q(y = b) = q(Y = -b) = 0, 

(b) for arbitrary p which is larger than zero fl > 0, &a’q”fky-2q=O fory= _th. (37) 

37-c 

’ = p[(97r’ - 16)ij’sinh(r+C,)’ (28) Remurk I 

where, The boundary conditions (37), are of the same form 

2+;$) 

as the differential equation for finding q by the 
Galerkin method. The solution to the equation (36) 

C, = arcsinh ,R (29) with the boundary conditions (37) is 

g qo(97c2 - 16)“’ li 
q=C,cosh~vsin~,~+C,sinh’f~,cos~~_l~, 

a’ (1 (1 

We note that the initial value q. can be found by 13X) 
minimizing the initial square residual of the form 

where II = 1.61842, m = 0.345407 and where C’, and 

J = 
I 

Z [r&O) - q,sinx]‘dx, 
(30) C, are constants that can be easily determined for 

0 specified a, b and k. If we take u = b = 1 and k = 0.2, 

with respect to qo. This standard procedure for finding 
then C, = -0.01482, C, = -0.03808 so that the 
approximate solution to the problem (32) (33) 

q. was applied previously (see for example [8]). becomes 

Applying the condition dJli?q, = 0, we have, 

7 fn U = (XL - l)[ -0.01482 cash 1.61842~ sin 0.345407~ 

q. =4 T[ ! of(n) sin x dx, (31) -0.03808sinh 1.61842ycosO.345407y + 0.1~1. (39) 

where u(x, 0) = ,J(x) is given initial condition. For the differential equation (32) an error estimate 

(D) As a last example we consider the problem of may be constructed, based on the value of the func- 

determining the stationary temperature field in a plate tional (2). To do this, we define the error fiu as 

with, on one coordinate linearly dependent, heat 6u = U - u. i40) 
sources. Namely, we take 

&!?!+!?!!_+O, 

where U is approximate and u exact solution to the 
(32) boundary value problem (32), (33). Expressing u in (2) 

dx2 dy2 by (40) we get 

where k = constant. Also we choose b a (‘2& -> 2 
I= (41) 

u=O for (x,y)EC, (33) sc[ -b -n 
_~7x’ + ??_? dxdy. .I (1r2 
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The Fourier series corresponding to &I can be written 
as 

au = c c Cllm %?I(% Y)t (42) 
n m 

where C,, are constants (Fourier coefficients) and Qnm 
are solutions of the following spectral problem 

a2@ a241 
~+~+n&@n,,,=o. 
ax2 ay2 (43) 

Qnnt = 0 for (x, y) EC. (44) 

Substituting (42) into (41) and using (43) and 
Parseval’s equation [ 121 we get the following estimate 

II h II Lz 5 j&g2. (45) 

In (45) we used (i&),),i, to denote the smallest eige- 
nvalue of the spectral problem (43), (44) and 

For the specific case when a = b = 1 and k = 0.2, 
approximate solution (39) gives, when substituted in 
(2) I = 0.006515. Also (J$,,),, = 271’ so that (45) 
becomes 

4. CONCLUSIONS 

A method, based on the least square residual, for 
finding approximate solutions of heat conduction 
problems, has been presented in this paper. It re- 
sembles Kantorovich’s method since differential equa- 
tions are obtained for finding adjustable parameters. 
In Kantorovic’s method these differential equations 
are the necessary conditions for the minimum of the 
variational integral, while in the method presented 
here they are a necessary and sufficient condition for 
the minimum of the square residual. Therefore the 
value of the integral of the square residual (2) is 
minimum on the approximate solution determined by 
the present method, when compared with other appro- 
ximate solutions of the same type. The differential 
equation for determining the adjustable parameter by 

the present method is always of the higher order than 
the corresponding equations in other methods. In the 
analyzed problems tKe natural boundary conditions 
have the same structure as the differential equations 
for finding the adjustable functions by other methods 
Tin example (A) Galerkin, in example (B) local poten- 
Cal and in example (D) Galerkin method]. The non- 
linear heat conduction problem of this method reduces 
to the corresponding non-linear two point boundary 
value problem. 

In comparison with other methods the results 
obtained here are in good agreement. 
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LA METHODE DES MOINDRES CARRES : APPROCHE DE KANTOROVICH 

R&me-On prksente une version de la mithode des moindres car& dans laquelle les paramttres ajustables 
sont for&ions d’une variable indkpendante. La minimization du r&idu des moindres car& est faite dans le 
sens du calcul variationnel. La pro&dure est appliqu&e B quelques problemes de conduction Ihermique. Dans 

un exemple, on obtient une estimation de l’erreur dam la solution approchte. 
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DIE METHODE DER KLEINSTEN QUADRATE: VORGEHEN NACH KANTOROVI(‘tI 

Zusammenfassung ~~ Es wird eine Version der Methode der kleinsten Fehlerquadrate beschrieben, be1 der 
die anzupassenden Parameter einer Versuchsliisung Funktionen einer unabhgngigen Variablen sind. Die 
Minimierung der Fehlerquadratsumme wird im Simme der Variationsrechnung durchgefhhrt. Das 
Verfahren wird auf einige WBrmeleitungsprobleme angewendet. Fiir ein Beispiel wird eine FehlerabschCt- 

zung der N%herungslGsung angegeben. 

METOA HAMMEHbUlMX KBAAPATOB nOjJXOfl KAHTOPOBMYA 

AHHmaqnn Hpen.nomen eapnas-r Merojla nat3MenbulRx IcsaLlparoe a cnyrae. ~0r.v l[o,uo~09~b1e 
napaMerpb1 B IIPO~HOM pememm IIBJIHIOICH $YHKIIRITMA He?aaHcxMoro uepeMennoro. MIIHMMMNIIMH 

HCBIISKA OCytLIeCTBJIReTCH cpencrsaMn L%ipMaLVfOHHOI-0 IIC~ACJleHHH. Meron nposepen ,,a HeCKO.nbKMX 

3a,qaqax rennonpoeonnocrll. B o,v~ov WI IrpwMepor, nonyrena onenKa norpeluttocl M npu6nM~eit- 
nor0 pemenHn. 


